Section Formula (Internal)

\( P=\left(\tfrac{mx_2+nx_1}{m+n},\;\tfrac{my_2+ny_1}{m+n}\right) \)
Coordinate Geometry GCSE

Find the midpoint of A(-10,4) and B(6,-8).

Tips: use ^ for powers, sqrt() for roots, and type pi for π.
Hint (H)
Use ratio 1:1

Explanation

Show / hide — toggle with X

Statement

If a point \(P\) divides the line segment between \(A(x_1,y_1)\) and \(B(x_2,y_2)\) in the ratio \(m:n\) internally, then its coordinates are:

\[ P = \left( \frac{mx_2 + nx_1}{m+n}, \; \frac{my_2 + ny_1}{m+n} \right) \]

Why it’s true

  • The formula is a weighted average of the coordinates.
  • If the ratio is 1:1, it gives the midpoint formula.
  • The weights \(m\) and \(n\) determine how close \(P\) is to each endpoint.
  • Larger \(m\) pulls \(P\) closer to \(B(x_2,y_2)\), larger \(n\) pulls it toward \(A(x_1,y_1)\).

Recipe (how to use it)

  1. Identify the endpoints \(A(x_1,y_1)\) and \(B(x_2,y_2)\).
  2. Write down the ratio \(m:n\).
  3. Substitute into the formula for both \(x\) and \(y\) coordinates.
  4. Simplify fractions to get the coordinates of \(P\).

Spotting it

Look for problems saying a point divides a line in a certain ratio internally, e.g., “Find the point that divides AB in the ratio 2:3.”

Common pairings

  • Midpoints (special case of ratio 1:1).
  • Geometry of triangles (e.g. centroid divides medians in 2:1).
  • Coordinate geometry and vector problems.

Mini examples

  1. Find point dividing A(2,4) and B(10,8) in ratio 1:1 → \((6,6)\).
  2. Find point dividing A(1,2) and B(7,8) in ratio 2:3 → \((5,6)\).
  3. Find point dividing A(-3,5) and B(9,1) in ratio 3:1 → \((6,2)\).

Pitfalls

  • Mixing up order of \(m\) and \(n\).
  • Forgetting it’s internal division (both weights positive).
  • Not simplifying coordinates fully.

Exam strategy

  • Write formula first before substituting values.
  • Double-check placement of ratio values with endpoints.
  • Use midpoint formula as a quick check if ratio=1:1.

Summary

The internal section formula gives the coordinates of a point dividing a line in a chosen ratio, using weighted averages of the endpoints.

Worked examples

Show / hide (10) — toggle with E
  1. Find the coordinates of the point dividing A(2,4) and B(10,8) in ratio 1:1.
    1. Apply formula
    2. \( x=(1*10+1*2)/2=6 \)
    3. \( y=(1*8+1*4)/2=6 \)
    Answer: (6,6)
  2. Find the point dividing A(1,2) and B(7,8) in ratio 2:3.
    1. \( x=(2*7+3*1)/5=17/5=3.4 \)
    2. \( y=(2*8+3*2)/5=22/5=4.4 \)
    Answer: (3.4,4.4)
  3. Find the midpoint of A(-2,6) and B(4,-2).
    1. Ratio 1:1
    2. \( x=(-2+4)/2=1 \)
    3. \( y=(6+(-2))/2=2 \)
    Answer: (1,2)
  4. Find the point dividing A(-3,5) and B(9,1) in ratio 3:1.
    1. \( x=(3*9+1*(-3))/4=24/4=6 \)
    2. \( y=(3*1+1*5)/4=8/4=2 \)
    Answer: (6,2)
  5. Find the point dividing A(0,0) and B(12,6) in ratio 2:1.
    1. \( x=(2*12+1*0)/3=24/3=8 \)
    2. \( y=(2*6+1*0)/3=12/3=4 \)
    Answer: (8,4)
  6. Find the coordinates of P dividing A(2,-1) and B(8,5) in ratio 1:2.
    1. \( x=(1*8+2*2)/3=12/3=4 \)
    2. \( y=(1*5+2*(-1))/3=3/3=1 \)
    Answer: (4,1)
  7. Find the point dividing A(5,7) and B(-3,1) in ratio 4:5.
    1. \( x=(4*(-3)+5*5)/9=13/9≈1.44 \)
    2. \( y=(4*1+5*7)/9=39/9=4.33 \)
    Answer: (1.44,4.33)
  8. Find the centroid of triangle with vertices A(0,0), B(6,0), C(0,6).
    1. Centroid divides medians 2:1
    2. \( Centroid=(2/3 along each median) \)
    3. \( Final=(2,2) \)
    Answer: (2,2)
  9. Find point dividing A(-5,4) and B(7,-8) in ratio 5:7.
    1. \( x=(5*7+7*(-5))/12=0 \)
    2. \( y=(5*(-8)+7*4)/12=-12/12=-1 \)
    Answer: (0,-1)
  10. Find the point dividing A(3,9) and B(-9,15) in ratio 3:5.
    1. \( x=(3*(-9)+5*3)/8=-12/8=-1.5 \)
    2. \( y=(3*15+5*9)/8=90/8=11.25 \)
    Answer: (-1.5,11.25)