Section Formula (Internal)
\( P=\left(\tfrac{mx_2+nx_1}{m+n},\;\tfrac{my_2+ny_1}{m+n}\right) \)
Coordinate Geometry
GCSE
∑ π √ ≈
Find the point dividing A(0,0) and B(12,6) in ratio 2:1.
Explanation
Show / hide — toggle with X
Statement
If a point \(P\) divides the line segment between \(A(x_1,y_1)\) and \(B(x_2,y_2)\) in the ratio \(m:n\) internally, then its coordinates are:
\[
P = \left( \frac{mx_2 + nx_1}{m+n}, \; \frac{my_2 + ny_1}{m+n} \right)
\]
Why it’s true
- The formula is a weighted average of the coordinates.
- If the ratio is 1:1, it gives the midpoint formula.
- The weights \(m\) and \(n\) determine how close \(P\) is to each endpoint.
- Larger \(m\) pulls \(P\) closer to \(B(x_2,y_2)\), larger \(n\) pulls it toward \(A(x_1,y_1)\).
Recipe (how to use it)
- Identify the endpoints \(A(x_1,y_1)\) and \(B(x_2,y_2)\).
- Write down the ratio \(m:n\).
- Substitute into the formula for both \(x\) and \(y\) coordinates.
- Simplify fractions to get the coordinates of \(P\).
Spotting it
Look for problems saying a point divides a line in a certain ratio internally, e.g., “Find the point that divides AB in the ratio 2:3.”
Common pairings
- Midpoints (special case of ratio 1:1).
- Geometry of triangles (e.g. centroid divides medians in 2:1).
- Coordinate geometry and vector problems.
Mini examples
- Find point dividing A(2,4) and B(10,8) in ratio 1:1 → \((6,6)\).
- Find point dividing A(1,2) and B(7,8) in ratio 2:3 → \((5,6)\).
- Find point dividing A(-3,5) and B(9,1) in ratio 3:1 → \((6,2)\).
Pitfalls
- Mixing up order of \(m\) and \(n\).
- Forgetting it’s internal division (both weights positive).
- Not simplifying coordinates fully.
Exam strategy
- Write formula first before substituting values.
- Double-check placement of ratio values with endpoints.
- Use midpoint formula as a quick check if ratio=1:1.
Summary
The internal section formula gives the coordinates of a point dividing a line in a chosen ratio, using weighted averages of the endpoints.
Worked examples
Show / hide (10) — toggle with E
-
Find the coordinates of the point dividing A(2,4) and B(10,8) in ratio 1:1.
-
Apply formula
-
\( x=(1*10+1*2)/2=6 \)
-
\( y=(1*8+1*4)/2=6 \)
Answer:
(6,6)
-
Find the point dividing A(1,2) and B(7,8) in ratio 2:3.
-
\( x=(2*7+3*1)/5=17/5=3.4 \)
-
\( y=(2*8+3*2)/5=22/5=4.4 \)
Answer:
(3.4,4.4)
-
Find the midpoint of A(-2,6) and B(4,-2).
-
Ratio 1:1
-
\( x=(-2+4)/2=1 \)
-
\( y=(6+(-2))/2=2 \)
Answer:
(1,2)
-
Find the point dividing A(-3,5) and B(9,1) in ratio 3:1.
-
\( x=(3*9+1*(-3))/4=24/4=6 \)
-
\( y=(3*1+1*5)/4=8/4=2 \)
Answer:
(6,2)
-
Find the point dividing A(0,0) and B(12,6) in ratio 2:1.
-
\( x=(2*12+1*0)/3=24/3=8 \)
-
\( y=(2*6+1*0)/3=12/3=4 \)
Answer:
(8,4)
-
Find the coordinates of P dividing A(2,-1) and B(8,5) in ratio 1:2.
-
\( x=(1*8+2*2)/3=12/3=4 \)
-
\( y=(1*5+2*(-1))/3=3/3=1 \)
Answer:
(4,1)
-
Find the point dividing A(5,7) and B(-3,1) in ratio 4:5.
-
\( x=(4*(-3)+5*5)/9=13/9≈1.44 \)
-
\( y=(4*1+5*7)/9=39/9=4.33 \)
Answer:
(1.44,4.33)
-
Find the centroid of triangle with vertices A(0,0), B(6,0), C(0,6).
-
Centroid divides medians 2:1
-
\( Centroid=(2/3 along each median) \)
-
\( Final=(2,2) \)
Answer:
(2,2)
-
Find point dividing A(-5,4) and B(7,-8) in ratio 5:7.
-
\( x=(5*7+7*(-5))/12=0 \)
-
\( y=(5*(-8)+7*4)/12=-12/12=-1 \)
Answer:
(0,-1)
-
Find the point dividing A(3,9) and B(-9,15) in ratio 3:5.
-
\( x=(3*(-9)+5*3)/8=-12/8=-1.5 \)
-
\( y=(3*15+5*9)/8=90/8=11.25 \)
Answer:
(-1.5,11.25)