GCSE Maths Formulas

Browse, pick your favourites, export a PDF pack, or jump into practice.

0 selected
GCSE • Algebra
modulus distance
\( |x| = x \text{ if } x \ge 0,\; -x \text{ if } x < 0 \)
GCSE • Algebra
fractions equations
\( \frac{A}{B}=\frac{C}{D}\;(BD\ne0)\;\Rightarrow\; AD=BC \)
GCSE • Algebra
sequence linear
\( u_n = a + (n-1)d \)
GCSE • Algebra
rate gradient
\( \text{Average rate on }[x_1,x_2]=\frac{f(x_2)-f(x_1)}{x_2-x_1} \)
GCSE • Algebra
expansion identities
\( (a+b)^2=a^2+2ab+b^2,\qquad (a-b)^2=a^2-2ab+b^2 \)
GCSE • Algebra
quadratic vertex form
\( x^2+bx+c=\left(x+\tfrac{b}{2}\right)^2-\left(\tfrac{b^2}{4}-c\right) \)
GCSE • Algebra
factorisation identity
\( a^2-b^2=(a-b)(a+b) \)
GCSE • Algebra
quadratic roots
\( \Delta = b^2 - 4ac \)
GCSE • Algebra
factorisation quadratic
\( x^2+bx+c=(x+p)(x+q),\;p+q=b,\;pq=c \)
GCSE • Algebra
indices powers
\( a^{1/n}=\sqrt[n]{a},\qquad a^{m/n}=\sqrt[n]{a^{m}}\;(a>0) \)
GCSE • Algebra
sequence ratio
\( u_n = ar^{\,n-1} \)
GCSE • Algebra
indices powers
\( a^m a^n = a^{m+n},\quad \frac{a^m}{a^n}=a^{m-n},\quad (a^m)^n=a^{mn},\quad a^{-n}=\frac{1}{a^n},\quad a^0=1 \)
GCSE • Algebra
quadratic roots
\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)
GCSE • Algebra
sequences quadratic
\( u_n=an^2+bn+c,\quad a=\tfrac{1}{2}\,\Delta^2,\quad b=\Delta u_1-3a,\quad c=u_1-a-b \)
GCSE • Algebra
quadratic vertex
\( x_{\text{vertex}}= -\tfrac{b}{2a},\quad y_{\text{vertex}}= f\!\left(-\tfrac{b}{2a}\right),\quad \text{axis}:\;x=-\tfrac{b}{2a} \)
GCSE • Algebra
completing the square vertex
\( y=a(x-h)^2+k \)
GCSE • Algebra
quadratic roots
\( y=a(x-r_1)(x-r_2)\;\Rightarrow\; r_1+r_2=-\tfrac{b}{a},\; r_1r_2=\tfrac{c}{a} \)
GCSE • Algebra
surds rationalise
\( \frac{1}{\sqrt{a}+\sqrt{b}}\cdot\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\frac{\sqrt{a}-\sqrt{b}}{a-b} \)
GCSE • Algebra
surds rationalise
\( \frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a}\;(a>0) \)
GCSE • Algebra
surds conjugate
\( \frac{1}{a+\sqrt{b}}\times\frac{a-\sqrt{b}}{a-\sqrt{b}}=\frac{a-\sqrt{b}}{a^{2}-b} \)
GCSE • Algebra
rearranging solving
\( ax+b=c\;\Rightarrow\;x=\tfrac{c-b}{a}\;(a\ne0) \)
GCSE • Algebra
series arithmetic
\( S_n=\tfrac{n}{2}\,[2a+(n-1)d]=\tfrac{n}{2}(a_1+a_n) \)
GCSE • Algebra
surds radicals
\( \sqrt{ab}=\sqrt{a}\,\sqrt{b},\quad \sqrt{\tfrac{a}{b}}=\tfrac{\sqrt{a}}{\sqrt{b}}\;(b>0),\quad (\sqrt{a})^2=a \)
GCSE • Algebra
surds simplify
\( a\sqrt{b}+c\sqrt{b}=(a+c)\sqrt{b} \)