Quadratic Formula

GCSE Algebra quadratic roots
\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)

Statement

For a quadratic equation \(ax^2+bx+c=0\), the solutions are:

\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

Why it’s true

  • The quadratic formula comes from completing the square on the general quadratic equation.
  • The expression inside the square root, \(b^2-4ac\), is called the discriminant.
  • The discriminant tells us about the type of solutions:
    • \(b^2-4ac>0\): two real solutions.
    • \(b^2-4ac=0\): one real solution (repeated root).
    • \(b^2-4ac<0\): two complex solutions.

Recipe (how to use it)

  1. Identify \(a\), \(b\), \(c\) from the quadratic.
  2. Calculate discriminant: \(D=b^2-4ac\).
  3. Substitute into formula: \((-b \pm \sqrt{D})/(2a)\).
  4. Simplify roots.

Spotting it

Use the quadratic formula when a quadratic cannot be factorised easily, or when asked to find exact solutions.

Common pairings

  • Discriminant analysis.
  • Graphing quadratics (x-intercepts).
  • Completing the square for comparison.

Mini examples

  1. Given: \(x^2+3x+2=0\).
    Answer: \(a=1,b=3,c=2\). \(x=(-3±√(9-8))/2=(-3±1)/2 → -1,-2.\)
  2. Given: \(2x^2-4x-6=0\).
    Answer: \(a=2,b=-4,c=-6\). Discriminant=64. \(x=(4±8)/4→3,-1.\)

Pitfalls

  • Forgetting ± gives only one solution instead of two.
  • Sign errors when substituting \(b\).
  • Square root mistakes with discriminant.

Exam strategy

  • Write down \(a,b,c\) first to avoid mistakes.
  • Always check discriminant to see how many roots to expect.
  • Leave exact answers in surd form if required.

Summary

The quadratic formula gives the exact solutions of any quadratic: \((-b±√(b^2-4ac))/(2a)\).

Examples

  1. Q: Solve x^2 - 3x - 4 = 0
    Steps: a=1,b=-3,c=-4 → x=(3±√(9+16))/2
    A: x=4 or x=-1