Rationalising 1/(√a + √b)
\( \frac{1}{\sqrt{a}+\sqrt{b}}\cdot\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\frac{\sqrt{a}-\sqrt{b}}{a-b} \)
Algebra
GCSE
∑ π √ ≈
\( Rationalise \tfrac{1}{\sqrt{15}+\sqrt{10}} \)
Explanation
Show / hide — toggle with X
Statement
When a denominator contains a sum of surds such as \( \sqrt{a} + \sqrt{b} \), we can rationalise it by multiplying top and bottom by the conjugate \( \sqrt{a} - \sqrt{b} \). This removes the surds from the denominator:
\[
\frac{1}{\sqrt{a} + \sqrt{b}} \times \frac{\sqrt{a} - \sqrt{b}}{\sqrt{a} - \sqrt{b}}
= \frac{\sqrt{a} - \sqrt{b}}{a - b}.
\]
Why it’s true
Multiplying conjugates uses the difference of two squares: \((\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = a - b\).
This eliminates the surds from the denominator while leaving the fraction equivalent.
Recipe (how to use it)
Identify the denominator, e.g. \(\sqrt{a} + \sqrt{b}\).
Multiply numerator and denominator by the conjugate, \(\sqrt{a} - \sqrt{b}\).
Simplify using \(a - b\) in the denominator.
Spotting it
Use this whenever you see fractions with denominators of the form \( \sqrt{a} + \sqrt{b} \) or \( \sqrt{a} - \sqrt{b} \).
Common pairings
Surds simplification in algebra questions.
Exact trig values involving surds.
Rationalising denominators before further manipulation.
Mini examples
\(\tfrac{1}{\sqrt{2} + \sqrt{3}} = \tfrac{\sqrt{2} - \sqrt{3}}{2 - 3} = \tfrac{\sqrt{3} - \sqrt{2}}{1}\).
\(\tfrac{1}{\sqrt{5} + \sqrt{2}} = \tfrac{\sqrt{5} - \sqrt{2}}{3}\).
Pitfalls
Forgetting to multiply top and bottom by the conjugate.
Expanding incorrectly (must use difference of two squares).
Leaving the denominator unsimplified.
Exam strategy
Always show the multiplication by the conjugate step clearly.
Remember to simplify surds fully where possible.
Check if the denominator simplifies to a small integer.
Summary
Rationalising denominators ensures fractions are written in their simplest form. By multiplying by the conjugate, surds disappear from the denominator, leaving a neater and exact expression.
Worked examples
Show / hide (10) — toggle with E
Rationalise 1 / (√2 + √3)
Multiply by (√2 - √3)/(√2 - √3)
Numerator: √2 - √3
\( Denominator: 2 - 3 = -1 \)
Answer:
√3 - √2
Rationalise 1 / (√5 + √2)
Multiply by (√5 - √2)/(√5 - √2)
Numerator: √5 - √2
\( Denominator: 5 - 2 = 3 \)
Answer:
(√5 - √2)/3
Rationalise 1 / (√7 + √3)
Multiply by (√7 - √3)/(√7 - √3)
\( Denominator = 7 - 3 = 4 \)
Answer:
(√7 - √3)/4
Rationalise 1 / (√6 + √10)
Multiply by (√6 - √10)/(√6 - √10)
\( Denominator = 6 - 10 = -4 \)
Answer:
(√10 - √6)/4
Rationalise 1 / (√8 + √2)
Multiply by (√8 - √2)/(√8 - √2)
\( Denominator = 8 - 2 = 6 \)
Answer:
(√8 - √2)/6
Rationalise 1 / (√3 + √11)
Multiply by (√3 - √11)/(√3 - √11)
\( Denominator = 3 - 11 = -8 \)
Answer:
(√11 - √3)/8
Rationalise 1 / (√12 + √27)
Multiply by (√12 - √27)/(√12 - √27)
\( Denominator = 12 - 27 = -15 \)
Answer:
(√27 - √12)/15
Rationalise 1 / (√a + √b)
Multiply by (√a - √b)/(√a - √b)
\( Denominator = a - b \)
Answer:
(√a - √b)/(a - b)
Simplify 1 / (√18 + √2)
Multiply by (√18 - √2)/(√18 - √2)
\( Denominator = 18 - 2 = 16 \)
Answer:
(√18 - √2)/16
Simplify 1 / (√50 + √8)
Multiply by (√50 - √8)/(√50 - √8)
\( Denominator = 50 - 8 = 42 \)
Answer:
(√50 - √8)/42