Rationalising 1/(√a + √b)

\( \frac{1}{\sqrt{a}+\sqrt{b}}\cdot\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\frac{\sqrt{a}-\sqrt{b}}{a-b} \)
Algebra GCSE
Question 1 of 20

\( Rationalise \tfrac{1}{\sqrt{2}+\sqrt{5}} \)

Tips: use ^ for powers, sqrt() for roots, and type pi for π.
Hint (H)
Multiply by the conjugate √2 - √5

Explanation

Show / hide — toggle with X

Statement

When a denominator contains a sum of surds such as \( \sqrt{a} + \sqrt{b} \), we can rationalise it by multiplying top and bottom by the conjugate \( \sqrt{a} - \sqrt{b} \). This removes the surds from the denominator:

\[ \frac{1}{\sqrt{a} + \sqrt{b}} \times \frac{\sqrt{a} - \sqrt{b}}{\sqrt{a} - \sqrt{b}} = \frac{\sqrt{a} - \sqrt{b}}{a - b}. \]

Why it’s true

  • Multiplying conjugates uses the difference of two squares: \((\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = a - b\).
  • This eliminates the surds from the denominator while leaving the fraction equivalent.

Recipe (how to use it)

  1. Identify the denominator, e.g. \(\sqrt{a} + \sqrt{b}\).
  2. Multiply numerator and denominator by the conjugate, \(\sqrt{a} - \sqrt{b}\).
  3. Simplify using \(a - b\) in the denominator.

Spotting it

Use this whenever you see fractions with denominators of the form \( \sqrt{a} + \sqrt{b} \) or \( \sqrt{a} - \sqrt{b} \).

Common pairings

  • Surds simplification in algebra questions.
  • Exact trig values involving surds.
  • Rationalising denominators before further manipulation.

Mini examples

  1. \(\tfrac{1}{\sqrt{2} + \sqrt{3}} = \tfrac{\sqrt{2} - \sqrt{3}}{2 - 3} = \tfrac{\sqrt{3} - \sqrt{2}}{1}\).
  2. \(\tfrac{1}{\sqrt{5} + \sqrt{2}} = \tfrac{\sqrt{5} - \sqrt{2}}{3}\).

Pitfalls

  • Forgetting to multiply top and bottom by the conjugate.
  • Expanding incorrectly (must use difference of two squares).
  • Leaving the denominator unsimplified.

Exam strategy

  • Always show the multiplication by the conjugate step clearly.
  • Remember to simplify surds fully where possible.
  • Check if the denominator simplifies to a small integer.

Summary

Rationalising denominators ensures fractions are written in their simplest form. By multiplying by the conjugate, surds disappear from the denominator, leaving a neater and exact expression.

Worked examples

Show / hide (10) — toggle with E
  1. Rationalise 1 / (√2 + √3)
    1. Multiply by (√2 - √3)/(√2 - √3)
    2. Numerator: √2 - √3
    3. \( Denominator: 2 - 3 = -1 \)
    Answer: √3 - √2
  2. Rationalise 1 / (√5 + √2)
    1. Multiply by (√5 - √2)/(√5 - √2)
    2. Numerator: √5 - √2
    3. \( Denominator: 5 - 2 = 3 \)
    Answer: (√5 - √2)/3
  3. Rationalise 1 / (√7 + √3)
    1. Multiply by (√7 - √3)/(√7 - √3)
    2. \( Denominator = 7 - 3 = 4 \)
    Answer: (√7 - √3)/4
  4. Rationalise 1 / (√6 + √10)
    1. Multiply by (√6 - √10)/(√6 - √10)
    2. \( Denominator = 6 - 10 = -4 \)
    Answer: (√10 - √6)/4
  5. Rationalise 1 / (√8 + √2)
    1. Multiply by (√8 - √2)/(√8 - √2)
    2. \( Denominator = 8 - 2 = 6 \)
    Answer: (√8 - √2)/6
  6. Rationalise 1 / (√3 + √11)
    1. Multiply by (√3 - √11)/(√3 - √11)
    2. \( Denominator = 3 - 11 = -8 \)
    Answer: (√11 - √3)/8
  7. Rationalise 1 / (√12 + √27)
    1. Multiply by (√12 - √27)/(√12 - √27)
    2. \( Denominator = 12 - 27 = -15 \)
    Answer: (√27 - √12)/15
  8. Rationalise 1 / (√a + √b)
    1. Multiply by (√a - √b)/(√a - √b)
    2. \( Denominator = a - b \)
    Answer: (√a - √b)/(a - b)
  9. Simplify 1 / (√18 + √2)
    1. Multiply by (√18 - √2)/(√18 - √2)
    2. \( Denominator = 18 - 2 = 16 \)
    Answer: (√18 - √2)/16
  10. Simplify 1 / (√50 + √8)
    1. Multiply by (√50 - √8)/(√50 - √8)
    2. \( Denominator = 50 - 8 = 42 \)
    Answer: (√50 - √8)/42