Quadratic Formula
\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)
Algebra
GCSE
∑ π √ ≈
Explanation
Show / hide — toggle with X
Statement
For a quadratic equation \(ax^2+bx+c=0\), the solutions are:
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
Why it’s true
- The quadratic formula comes from completing the square on the general quadratic equation.
- The expression inside the square root, \(b^2-4ac\), is called the discriminant.
- The discriminant tells us about the type of solutions:
- \(b^2-4ac>0\): two real solutions.
- \(b^2-4ac=0\): one real solution (repeated root).
- \(b^2-4ac<0\): two complex solutions.
Recipe (how to use it)
- Identify \(a\), \(b\), \(c\) from the quadratic.
- Calculate discriminant: \(D=b^2-4ac\).
- Substitute into formula: \((-b \pm \sqrt{D})/(2a)\).
- Simplify roots.
Spotting it
Use the quadratic formula when a quadratic cannot be factorised easily, or when asked to find exact solutions.
Common pairings
- Discriminant analysis.
- Graphing quadratics (x-intercepts).
- Completing the square for comparison.
Mini examples
- Given: \(x^2+3x+2=0\).
Answer: \(a=1,b=3,c=2\). \(x=(-3±√(9-8))/2=(-3±1)/2 → -1,-2.\)
- Given: \(2x^2-4x-6=0\).
Answer: \(a=2,b=-4,c=-6\). Discriminant=64. \(x=(4±8)/4→3,-1.\)
Pitfalls
- Forgetting ± gives only one solution instead of two.
- Sign errors when substituting \(b\).
- Square root mistakes with discriminant.
Exam strategy
- Write down \(a,b,c\) first to avoid mistakes.
- Always check discriminant to see how many roots to expect.
- Leave exact answers in surd form if required.
Summary
The quadratic formula gives the exact solutions of any quadratic: \((-b±√(b^2-4ac))/(2a)\).
Worked examples
Show / hide (11) — toggle with E
-
\( Solve x^2+3x+2=0 using quadratic formula. \)
-
\( a=1,b=3,c=2 \)
-
\( D=9-8=1 \)
-
\( x=(-3±1)/2 \)
-
\( x=-1,-2 \)
Answer:
-1,-2
-
\( Solve x^2-5x+6=0. \)
-
\( a=1,b=-5,c=6 \)
-
\( D=25-24=1 \)
-
\( x=(5±1)/2 \)
-
\( x=2,3 \)
Answer:
2,3
-
\( Solve 2x^2-4x-6=0. \)
-
\( a=2,b=-4,c=-6 \)
-
\( D=64 \)
-
\( x=(4±8)/4 \)
-
\( x=3,-1 \)
Answer:
3,-1
-
\( Solve x^2-4x-5=0. \)
-
\( a=1,b=-4,c=-5 \)
-
\( D=16+20=36 \)
-
\( x=(4±6)/2 \)
-
\( x=5,-1 \)
Answer:
5,-1
-
\( Solve x^2+2x+1=0. \)
-
\( a=1,b=2,c=1 \)
-
\( D=0 \)
-
\( x=(-2)/2=-1 \)
Answer:
-1 (repeated root)
-
\( Solve x^2-2x-8=0. \)
-
\( a=1,b=-2,c=-8 \)
-
\( D=36 \)
-
\( x=(2±6)/2 \)
-
\( x=4,-2 \)
Answer:
4,-2
-
\( Solve 3x^2-12x+9=0. \)
-
\( a=3,b=-12,c=9 \)
-
\( D=144-108=36 \)
-
\( x=(12±6)/6 \)
-
\( x=3,1 \)
Answer:
3,1
-
\( Solve x^2+6x+5=0. \)
-
\( a=1,b=6,c=5 \)
-
\( D=36-20=16 \)
-
\( x=(-6±4)/2 \)
-
\( x=-1,-5 \)
Answer:
-1,-5
-
\( Solve 2x^2+3x-2=0. \)
-
\( a=2,b=3,c=-2 \)
-
\( D=9+16=25 \)
-
\( x=(-3±5)/4 \)
-
\( x=0.5,-2 \)
Answer:
0.5,-2
-
\( Solve x^2+4x+8=0. \)
-
\( a=1,b=4,c=8 \)
-
\( D=16-32=-16 \)
-
\( x=(-4±√-16)/2 \)
-
\( x=-2±2i \)
Answer:
Complex roots: -2±2i
-
\( Solve x^2 - 3x - 4 = 0 \)
-
\( a=1,b=-3,c=-4 \)
-
\( x=(3±√(9+16))/2 \)
Answer:
\( x=4 or x=-1 \)