Pythagoras’ Theorem

\( a^2 + b^2 = c^2 \)
Geometry GCSE

\( Right triangle: c=10, b=6. Find a. \)

Hint (H)
\( a^2=c^2-b^2. \)

Explanation

Show / hide — toggle with X

Statement

In a right-angled triangle with shorter sides \(a\), \(b\), and hypotenuse \(c\):

\[ a^2 + b^2 = c^2 \]

Why it’s true

  • Squares built on the sides of a right triangle have areas related this way.
  • The area of the square on the hypotenuse equals the sum of the areas on the other two sides.
  • It is a geometric property unique to right-angled triangles.

Recipe (how to use it)

  1. Square both shorter sides \(a\) and \(b\).
  2. Add them together to find \(c^2\).
  3. Square root the result to get \(c\).
  4. If solving for a shorter side: rearrange as \(a^2 = c^2 - b^2\).

Spotting it

This formula applies only in right-angled triangles.

Common pairings

  • Trigonometry (sine, cosine, tangent).
  • Distance formula in coordinate geometry.
  • 3D Pythagoras problems (space diagonals).

Mini examples

  1. Given: \(a=3, b=4\).
    Answer: \(c=\sqrt{3^2+4^2}=\sqrt{25}=5\).
  2. Given: \(c=13, b=5\).
    Answer: \(a=\sqrt{13^2-5^2}=\sqrt{169-25}=\sqrt{144}=12\).

Pitfalls

  • Forgetting to square root at the end.
  • Using the formula in triangles that are not right-angled.

Exam strategy

  • Check for a right angle before applying the formula.
  • Always square root your final result if solving for a length.

Summary

Pythagoras’ theorem links the sides of a right triangle: \(a^2+b^2=c^2\). It is essential in geometry and distance calculations.

Worked examples

Show / hide (10) — toggle with E
  1. \( Find hypotenuse if a=3, b=4. \)
    1. \( c^2=3^2+4^2=9+16=25 \)
    2. \( c=√25=5 \)
    Answer: 5
  2. \( Find hypotenuse if a=5, b=12. \)
    1. \( c^2=25+144=169 \)
    2. \( c=√169=13 \)
    Answer: 13
  3. \( Find missing side if c=10, b=6. \)
    1. \( a^2=100-36=64 \)
    2. \( a=√64=8 \)
    Answer: 8
  4. \( Find missing side if c=25, a=7. \)
    1. \( b^2=625-49=576 \)
    2. \( b=√576=24 \)
    Answer: 24
  5. \( Find hypotenuse if a=9, b=12. \)
    1. \( c^2=81+144=225 \)
    2. \( c=√225=15 \)
    Answer: 15
  6. \( Find hypotenuse if a=8, b=15. \)
    1. \( c^2=64+225=289 \)
    2. \( c=√289=17 \)
    Answer: 17
  7. \( Find missing side if c=29, b=20. \)
    1. \( a^2=841-400=441 \)
    2. \( a=√441=21 \)
    Answer: 21
  8. \( Find hypotenuse if a=7, b=24. \)
    1. \( c^2=49+576=625 \)
    2. \( c=√625=25 \)
    Answer: 25
  9. \( Find missing side if c=50, b=48. \)
    1. \( a^2=2500-2304=196 \)
    2. \( a=√196=14 \)
    Answer: 14
  10. \( Find hypotenuse if a=20, b=21. \)
    1. \( c^2=400+441=841 \)
    2. \( c=√841=29 \)
    Answer: 29