Perimeter of a Sector
\( P=\frac{\theta}{360^{\circ}}\,2\pi r+2r \)
Geometry
GCSE
∑ π √ ≈
Radius 15, angle 72°. Find perimeter.
Explanation
Show / hide — toggle with X
Statement
The perimeter of a sector is the sum of the arc length and the two radii. It is given by:
\[
P = \frac{\theta}{360^\circ} \cdot 2\pi r + 2r
\]
Why it’s true
- The perimeter of a sector includes two straight sides (both radii = \(2r\)) and a curved arc.
- The arc length is a fraction of the full circumference (\(2\pi r\)), proportional to \(\frac{\theta}{360}\).
- Adding them gives: \(P = \text{arc length} + 2r\).
Recipe (how to use it)
- Identify the angle \(\theta\) and the radius \(r\).
- Compute the arc length: \(\frac{\theta}{360} \times 2\pi r\).
- Add \(2r\) for the two radii.
Spotting it
This formula is used when asked for the “perimeter” or “boundary length” of a sector (not just the arc).
Common pairings
- Problems about slices of pizza or cake (sector shapes).
- Geometry questions on circle sectors.
- Comparing perimeters and areas of sectors.
Mini examples
- Given: Circle radius 6 cm, angle \(90^\circ\). Answer: \(P = (90/360)(2\pi \cdot 6) + 12 = 9.42 + 12 = 21.42\).
- Given: Circle radius 10 cm, angle \(60^\circ\). Answer: \(P = (60/360)(2\pi \cdot 10) + 20 = 10.47 + 20 = 30.47\).
Pitfalls
- Forgetting to include the two radii (\(+2r\)).
- Using radians instead of degrees without converting.
- Mixing up perimeter with arc length (which is only the curved part).
Exam strategy
- Underline “perimeter” in the question to remind yourself it includes both radii.
- Write arc length separately, then add \(2r\).
- Round to 2 decimal places unless told otherwise.
Summary
The perimeter of a sector is the arc length plus the two radii. Use the formula: \(\;P = \frac{\theta}{360}\cdot 2\pi r + 2r\).
Worked examples
Show / hide (10) — toggle with E
-
Radius 6 cm, angle 90°. Find perimeter of sector.
-
\( Arc=(90/360)*2π*6=9.42 \)
-
\( Add 2r=12 \)
-
\( P=21.42 \)
Answer:
21.42
-
Radius 10 cm, angle 60°. Find perimeter of sector.
-
\( Arc=(60/360)*2π*10=10.47 \)
-
Add 20
-
\( P=30.47 \)
Answer:
30.47
-
Radius 5 cm, angle 180°. Find perimeter of sector.
-
\( Arc=(180/360)*2π*5=15.71 \)
-
Add 10
-
\( P=25.71 \)
Answer:
25.71
-
Radius 7 cm, angle 120°. Find perimeter of sector.
-
\( Arc=(120/360)*2π*7=14.66 \)
-
Add 14
-
\( P=28.66 \)
Answer:
28.66
-
Radius 8 cm, angle 45°. Find perimeter of sector.
-
\( Arc=(45/360)*2π*8=6.28 \)
-
Add 16
-
\( P=22.28 \)
Answer:
22.28
-
Radius 12 cm, angle 150°. Find perimeter of sector.
-
\( Arc=(150/360)*2π*12=31.42 \)
-
Add 24
-
\( P=55.42 \)
Answer:
55.42
-
Radius 15 cm, angle 72°. Find perimeter of sector.
-
\( Arc=(72/360)*2π*15=18.85 \)
-
Add 30
-
\( P=48.85 \)
Answer:
48.85
-
Radius 9 cm, angle 210°. Find perimeter of sector.
-
\( Arc=(210/360)*2π*9=32.99 \)
-
Add 18
-
\( P=50.99 \)
Answer:
50.99
-
Radius 20 cm, angle 270°. Find perimeter of sector.
-
\( Arc=(270/360)*2π*20=94.25 \)
-
Add 40
-
\( P=134.25 \)
Answer:
134.25
-
Radius 25 cm, angle 36°. Find perimeter of sector.
-
\( Arc=(36/360)*2π*25=15.71 \)
-
Add 50
-
\( P=65.71 \)
Answer:
65.71