Perimeter of a Sector

\( P=\frac{\theta}{360^{\circ}}\,2\pi r+2r \)
Geometry GCSE

Radius 10, angle 60°. Find perimeter of sector.

Tips: use ^ for powers, sqrt() for roots, and type pi for π.
Hint (H)
\( Use formula P=(θ/360)*2πr+2r. \)

Explanation

Show / hide — toggle with X

Statement

The perimeter of a sector is the sum of the arc length and the two radii. It is given by:

\[ P = \frac{\theta}{360^\circ} \cdot 2\pi r + 2r \]

Why it’s true

  • The perimeter of a sector includes two straight sides (both radii = \(2r\)) and a curved arc.
  • The arc length is a fraction of the full circumference (\(2\pi r\)), proportional to \(\frac{\theta}{360}\).
  • Adding them gives: \(P = \text{arc length} + 2r\).

Recipe (how to use it)

  1. Identify the angle \(\theta\) and the radius \(r\).
  2. Compute the arc length: \(\frac{\theta}{360} \times 2\pi r\).
  3. Add \(2r\) for the two radii.

Spotting it

This formula is used when asked for the “perimeter” or “boundary length” of a sector (not just the arc).

Common pairings

  • Problems about slices of pizza or cake (sector shapes).
  • Geometry questions on circle sectors.
  • Comparing perimeters and areas of sectors.

Mini examples

  1. Given: Circle radius 6 cm, angle \(90^\circ\). Answer: \(P = (90/360)(2\pi \cdot 6) + 12 = 9.42 + 12 = 21.42\).
  2. Given: Circle radius 10 cm, angle \(60^\circ\). Answer: \(P = (60/360)(2\pi \cdot 10) + 20 = 10.47 + 20 = 30.47\).

Pitfalls

  • Forgetting to include the two radii (\(+2r\)).
  • Using radians instead of degrees without converting.
  • Mixing up perimeter with arc length (which is only the curved part).

Exam strategy

  • Underline “perimeter” in the question to remind yourself it includes both radii.
  • Write arc length separately, then add \(2r\).
  • Round to 2 decimal places unless told otherwise.

Summary

The perimeter of a sector is the arc length plus the two radii. Use the formula: \(\;P = \frac{\theta}{360}\cdot 2\pi r + 2r\).

Worked examples

Show / hide (10) — toggle with E
  1. Radius 6 cm, angle 90°. Find perimeter of sector.
    1. \( Arc=(90/360)*2π*6=9.42 \)
    2. \( Add 2r=12 \)
    3. \( P=21.42 \)
    Answer: 21.42
  2. Radius 10 cm, angle 60°. Find perimeter of sector.
    1. \( Arc=(60/360)*2π*10=10.47 \)
    2. Add 20
    3. \( P=30.47 \)
    Answer: 30.47
  3. Radius 5 cm, angle 180°. Find perimeter of sector.
    1. \( Arc=(180/360)*2π*5=15.71 \)
    2. Add 10
    3. \( P=25.71 \)
    Answer: 25.71
  4. Radius 7 cm, angle 120°. Find perimeter of sector.
    1. \( Arc=(120/360)*2π*7=14.66 \)
    2. Add 14
    3. \( P=28.66 \)
    Answer: 28.66
  5. Radius 8 cm, angle 45°. Find perimeter of sector.
    1. \( Arc=(45/360)*2π*8=6.28 \)
    2. Add 16
    3. \( P=22.28 \)
    Answer: 22.28
  6. Radius 12 cm, angle 150°. Find perimeter of sector.
    1. \( Arc=(150/360)*2π*12=31.42 \)
    2. Add 24
    3. \( P=55.42 \)
    Answer: 55.42
  7. Radius 15 cm, angle 72°. Find perimeter of sector.
    1. \( Arc=(72/360)*2π*15=18.85 \)
    2. Add 30
    3. \( P=48.85 \)
    Answer: 48.85
  8. Radius 9 cm, angle 210°. Find perimeter of sector.
    1. \( Arc=(210/360)*2π*9=32.99 \)
    2. Add 18
    3. \( P=50.99 \)
    Answer: 50.99
  9. Radius 20 cm, angle 270°. Find perimeter of sector.
    1. \( Arc=(270/360)*2π*20=94.25 \)
    2. Add 40
    3. \( P=134.25 \)
    Answer: 134.25
  10. Radius 25 cm, angle 36°. Find perimeter of sector.
    1. \( Arc=(36/360)*2π*25=15.71 \)
    2. Add 50
    3. \( P=65.71 \)
    Answer: 65.71