Cyclic Quadrilateral (Opposite Angles)

\( A+C=180^{\circ},\quad B+D=180^{\circ} \)
Circle Theorems GCSE

\( In a cyclic quadrilateral, A=134^{\circ}.\; Find C. \)

Hint (H)
\( A+C=180^{\circ}. \)

Explanation

Show / hide — toggle with X

Statement

In a cyclic quadrilateral (a quadrilateral inscribed in a circle), the opposite angles always add up to 180°:

\[ A + C = 180^\circ, \quad B + D = 180^\circ \]

Why it’s true

  • The angle subtended by an arc at the centre of a circle is twice the angle subtended at the circumference.
  • For opposite angles of a cyclic quadrilateral, each pair subtends supplementary arcs that together make a full circle (360°).
  • Therefore, the opposite angles are supplementary: they add to 180°.

Recipe (how to use it)

  1. Identify the quadrilateral inscribed in the circle.
  2. Pair opposite angles: \(A\) with \(C\), \(B\) with \(D\).
  3. Use the property: \(A+C=180^\circ\) or \(B+D=180^\circ\).
  4. Solve for the unknown angle(s).

Spotting it

Look for a quadrilateral drawn inside a circle with all four vertices on the circle. The question may explicitly say “cyclic quadrilateral” or show the shape within a circle.

Common pairings

  • Circle theorems (angle subtended by same arc, angle at centre = 2× angle at circumference).
  • Properties of tangents and chords when combined with cyclic quadrilaterals.

Mini examples

  1. In a cyclic quadrilateral, angle \(A=75^\circ\). Then angle \(C=180-75=105^\circ\).
  2. In the same figure, if \(B=110^\circ\), then \(D=180-110=70^\circ\).

Pitfalls

  • Forgetting that this only works if all four vertices lie on the circle.
  • Mixing adjacent and opposite angles — only opposite angles add to 180°.

Exam strategy

  • State clearly that “opposite angles in a cyclic quadrilateral add to 180°” when giving reasons.
  • Check the diagram: confirm all four vertices lie on the circle before applying the rule.

Summary

In any cyclic quadrilateral, the opposite angles are supplementary: \(A+C=180^\circ\), \(B+D=180^\circ\). This is a direct consequence of circle theorems and is often used to find missing angles in geometry problems.

Worked examples

Show / hide (10) — toggle with E
  1. \( In a cyclic quadrilateral, angle A=72°. Find angle C. \)
    1. Opposite angles add to 180°.
    2. \( C=180-72=108°. \)
    Answer: 108°
  2. \( In a cyclic quadrilateral, angle B=95°. Find angle D. \)
    1. Opposite angles add to 180°.
    2. \( D=180-95=85°. \)
    Answer: 85°
  3. \( A cyclic quadrilateral has angle A=80°, angle B=100°. Find angle C. \)
    1. \( A+C=180. \)
    2. \( C=180-80=100°. \)
    Answer: 100°
  4. \( A cyclic quadrilateral has angles A=60°, B=110°. Find angle D. \)
    1. \( B+D=180. \)
    2. \( D=180-110=70°. \)
    Answer: 70°
  5. \( In a cyclic quadrilateral, angle C=120°. Find angle A. \)
    1. \( A+C=180. \)
    2. \( A=180-120=60°. \)
    Answer: 60°
  6. \( A cyclic quadrilateral has A=75°, B=95°. Find C and D. \)
    1. \( A+C=180 ⇒ C=105. \)
    2. \( B+D=180 ⇒ D=85. \)
    Answer: \( C=105°, D=85° \)
  7. \( In a cyclic quadrilateral, angles A=78°, C=102°. Find angles B and D if B=D. \)
    1. \( A+C=180 already true. \)
    2. \( B+D=180 ⇒ 2B=180 ⇒ B=D=90°. \)
    Answer: \( B=90°, D=90° \)
  8. \( A cyclic quadrilateral has angles A=65°, B=115°. Find C and D. \)
    1. \( A+C=180 ⇒ C=115. \)
    2. \( B+D=180 ⇒ D=65. \)
    Answer: \( C=115°, D=65° \)
  9. In a cyclic quadrilateral, one angle is 132°. Find its opposite angle.
    1. Opposite angles add to 180.
    2. \( 180-132=48°. \)
    Answer: 48°
  10. \( In a cyclic quadrilateral, A=90°, B=85°. Find C and D. \)
    1. \( A+C=180 ⇒ C=90. \)
    2. \( B+D=180 ⇒ D=95. \)
    Answer: \( C=90°, D=95° \)