-
\( Find the centre and radius of the circle: x² + y² − 4x − 6y + 9 = 0. \)
-
\( General form: x² + y² + gx + fy + c = 0. \)
-
\( Here g = −4, f = −6, c = 9. \)
-
\( Centre = (−g/2, −f/2) = (2, 3). \)
-
\( Radius = √((g/2)² + (f/2)² − c) = √(2² + 3² − 9) = √(13 − 9) = 2. \)
Answer:
Centre (2,3), radius 2
-
\( Find the centre and radius of the circle: x² + y² + 8x − 10y + 20 = 0. \)
-
\( g = 8, f = −10, c = 20. \)
-
\( Centre = (−g/2, −f/2) = (−4, 5). \)
-
\( Radius = √((g/2)² + (f/2)² − c) = √((4)² + (−5)² − 20) = √(16 + 25 − 20) = √21. \)
Answer:
Centre (−4,5), radius √21
-
Find the equation of the circle with centre (3, −2) and radius 5.
-
\( General form: (x − h)² + (y − k)² = r². \)
-
\( Expanding: x² + y² − 6x + 4y + (h² + k² − r²) = 0. \)
-
\( Substitute h=3, k=−2, r=5. \)
-
\( Equation: x² + y² − 6x + 4y + (9+4−25)=0 ⇒ x² + y² − 6x + 4y −12=0. \)
Answer:
\( x² + y² − 6x + 4y − 12 = 0 \)
-
\( Given circle equation x² + y² − 2x + 4y − 11 = 0, find centre and radius. \)
-
\( g=−2, f=4, c=−11. \)
-
\( Centre=(−g/2, −f/2)=(1,−2). \)
-
\( Radius=√((−1)² + (−2)² − (−11)) = √(1+4+11)=√16=4. \)
Answer:
Centre (1,−2), radius 4
-
Find the circle equation with centre (−2,1) and radius 3.
-
\( Equation: (x+2)² + (y−1)² = 9. \)
-
\( Expand: x²+4x+4 + y²−2y+1 = 9. \)
-
\( Simplify: x²+y²+4x−2y−4=0. \)
Answer:
\( x² + y² + 4x − 2y − 4 = 0 \)
-
\( Circle: x² + y² + 6x + 8y + 9 = 0. Find centre and radius. \)
-
\( g=6, f=8, c=9. \)
-
\( Centre=(−3,−4). \)
-
\( Radius=√((3)²+(4)²−9)=√(25−9)=√16=4. \)
Answer:
Centre (−3,−4), radius 4
-
\( Equation: x² + y² − 12x − 14y + 33 = 0. Find centre and radius. \)
-
\( g=−12, f=−14, c=33. \)
-
\( Centre=(6,7). \)
-
\( Radius=√((6)²+(7)²−33)=√(36+49−33)=√52=2√13. \)
Answer:
Centre (6,7), radius 2√13
-
\( Find the centre and radius of: x² + y² + 2x + 2y − 15 = 0. \)
-
\( g=2, f=2, c=−15. \)
-
\( Centre=(−1,−1). \)
-
\( Radius=√((1)²+(1)²−(−15))=√(2+15)=√17. \)
Answer:
Centre (−1,−1), radius √17
-
Circle with centre (4,−3), radius 7. Find equation.
-
\( Equation: (x−4)²+(y+3)²=49. \)
-
\( Expand: x²−8x+16 + y²+6y+9=49. \)
-
\( Simplify: x²+y²−8x+6y−24=0. \)
Answer:
\( x² + y² − 8x + 6y − 24 = 0 \)
-
\( Find the centre and radius of: x² + y² + 10x − 4y + 20 = 0. \)
-
\( g=10, f=−4, c=20. \)
-
\( Centre=(−5,2). \)
-
\( Radius=√((5)²+(−2)²−20)=√(25+4−20)=√9=3. \)
Answer:
Centre (−5,2), radius 3