-
\( Radius 7 cm, angle 90^{\circ}. Find area of sector. \)
-
\( A=(90/360)×π×7^2. \)
-
\( =(1/4)×49π. \)
-
\( A=49π/4. \)
Answer:
\( \tfrac{49\pi}{4}\,\text{cm}^2 \)
-
\( Radius 3 m, angle 120^{\circ}. Find area. \)
-
\( A=(120/360)×π×3^2. \)
-
\( =(1/3)×9π. \)
-
\( A=3π. \)
Answer:
\( 3\pi\,\text{m}^2 \)
-
\( Circle radius 10 cm, angle 60^{\circ}. Find area of sector. \)
-
\( A=(60/360)×π×100. \)
-
\( =(1/6)×100π. \)
-
\( A=50π/3. \)
Answer:
\( \tfrac{50\pi}{3}\,\text{cm}^2 \)
-
\( Radius 14 cm, angle 45^{\circ}. Find area. \)
-
\( A=(45/360)×π×196. \)
-
\( =(1/8)×196π. \)
-
\( A=49π/2. \)
Answer:
\( \tfrac{49\pi}{2}\,\text{cm}^2 \)
-
\( A circle has area 144π cm^2. Find area of a 90^{\circ} sector. \)
-
\( Total area=144π. \)
-
\( Sector=(90/360)×144π. \)
-
\( =36π. \)
Answer:
\( 36\pi\,\text{cm}^2 \)
-
\( Radius 5 cm, angle 150^{\circ}. Find sector area. \)
-
\( A=(150/360)×π×25. \)
-
\( =(5/12)×25π. \)
-
\( A=125π/12. \)
Answer:
\( \tfrac{125\pi}{12}\,\text{cm}^2 \)
-
\( Radius 6 cm, angle 225^{\circ}. Find area of sector. \)
-
\( A=(225/360)×π×36. \)
-
\( =(5/8)×36π. \)
-
\( A=22.5π. \)
Answer:
\( 22.5\pi\,\text{cm}^2 \)
-
\( Radius 40 cm, angle 18^{\circ}. Find area of sector. \)
-
\( A=(18/360)×π×1600. \)
-
\( =(1/20)×1600π. \)
-
\( A=80π. \)
Answer:
\( 80\pi\,\text{cm}^2 \)
-
\( Sector area=24π cm^2 in circle radius 12 cm. Find angle θ. \)
-
\( A=(θ/360)×π×144. \)
-
\( 24π=(θ/360)×144π. \)
-
\( 24=(θ/360)×144 => θ=60. \)
Answer:
\( 60^{\circ} \)
-
\( Sector area=64π cm^2 in circle radius 16 cm. Find angle θ. \)
-
\( A=(θ/360)×π×256. \)
-
\( 64π=(θ/360)×256π. \)
-
\( 64=(θ/360)×256 => θ=90. \)
Answer:
\( 90^{\circ} \)