3D Pythagoras

\( d=\sqrt{a^2+b^2+c^2} \)
Geometry GCSE

Cuboid 4×8×15. Diagonal?

Tips: use ^ for powers, sqrt() for roots, and type pi for π.
Hint (H)
Square each side, add, root.

Explanation

Show / hide — toggle with X

Statement

In three dimensions, the Pythagoras theorem extends to find the length of the space diagonal of a cuboid or right-angled box:

\[ d = \sqrt{a^2 + b^2 + c^2} \]

where \(a, b, c\) are the side lengths and \(d\) is the diagonal running corner-to-corner through the solid.

Why it’s true

  • In 2D: right-angled triangle gives \(d^2=a^2+b^2\).
  • In 3D: apply Pythagoras twice.
  • First, diagonal on base: \(\sqrt{a^2+b^2}\).
  • Then include height: \(d^2=(a^2+b^2)+c^2\).

Recipe (how to use it)

  1. Square each edge length \(a, b, c\).
  2. Add them together.
  3. Take the square root.
  4. Answer in the same units as the edges.

Spotting it

Look for problems asking for the longest diagonal of a cuboid, box, or 3D shape made of right angles.

Common pairings

  • Often paired with standard Pythagoras and trigonometry.
  • Can be linked to vector magnitude in 3D: \(\sqrt{x^2+y^2+z^2}\).

Mini examples

  1. Cuboid 3×4×12: \(d=\sqrt{3^2+4^2+12^2}=\sqrt{9+16+144}=\sqrt{169}=13\).
  2. Cube side 5: \(d=\sqrt{5^2+5^2+5^2}=\sqrt{75}=5\sqrt{3}\).

Pitfalls

  • Forgetting to include all three dimensions.
  • Confusing face diagonal with space diagonal.
  • Leaving answer as squared, not square-rooted.

Exam strategy

  • Always sketch the cuboid to see the 3D right-angled triangle.
  • Double-check whether question asks for face diagonal or space diagonal.
  • Keep answers exact unless decimals requested.

Summary

The 3D Pythagoras formula finds the space diagonal of a cuboid: square each side length, add, and take the square root.

Worked examples

Show / hide (12) — toggle with E
  1. Find the space diagonal \(d\) of a cuboid with sides 4\,\text{cm}, 3\,\text{cm}, and 12\,\text{cm}.
    1. Use \(d=\sqrt{a^2+b^2+c^2}\).
    2. Substitute: \(d=\sqrt{4^2+3^2+12^2}=\sqrt{16+9+144}\).
    3. So \(d=\sqrt{169}=13\).
    Answer: 13 cm
  2. Find d for sides 4,3,12.
    1. Use \(d=\sqrt{a^2+b^2+c^2}\).
    2. Compute \(\sqrt{16+9+144}=\sqrt{169}\).
    Answer: 13 cm
  3. Find the space diagonal of a cuboid 3×4×12.
    1. \( Square: 9+16+144=169 \)
    2. \( Root=√169=13 \)
    Answer: 13
  4. Cube side 5 cm. Find space diagonal.
    1. \( d=√(25+25+25)=√75=5√3 \)
    Answer: 5√3
  5. Cuboid 2×6×9. Find diagonal.
    1. \( d=√(4+36+81)=√121=11 \)
    Answer: 11
  6. Cuboid 1×2×2. Find diagonal.
    1. \( d=√(1+4+4)=√9=3 \)
    Answer: 3
  7. Cuboid 7×24×25. Find diagonal.
    1. \( d=√(49+576+625)=√1250≈35.36 \)
    Answer: ≈35.36
  8. Cube side 10 cm. Find diagonal.
    1. \( d=√(100+100+100)=√300=10√3 \)
    Answer: 10√3
  9. Cuboid 8×15×17. Find diagonal.
    1. \( d=√(64+225+289)=√578≈24.04 \)
    Answer: ≈24.04
  10. General cuboid a×b×c. Find diagonal.
    1. \( d=√(a²+b²+c²) \)
    Answer: √(a²+b²+c²)
  11. Rectangular box 12×9×20. Find diagonal.
    1. \( d=√(144+81+400)=√625=25 \)
    Answer: 25
  12. Cube side x. Find diagonal.
    1. \( d=√(x²+x²+x²)=√(3x²)=x√3 \)
    Answer: x√3