\( \begin{aligned}&\text{Find }k\text{ from }y=kx^2\text{ using }(x,y)=(1,5).\\&\text{Find }c\text{ from }x=\tfrac{c}{w}\text{ using }(w,x)=(0.5,3).\\&\text{Use }w=0.25\Rightarrow x,\text{ then }y=5x^2.\end{aligned} \)
Question 14:
[Ad Space]
\[ \begin{array}{l} y\text{ is proportional to }x^2.\\ y=5\text{ when }x=1.\\ x\text{ is inversely proportional to }w.\\ x=3\text{ when }w=0.5.\\ \text{Find the value of }y\text{ when }w=0.25.\end{array} \]
Answer:\(180\)
Explanation:
\begin{aligned} &y\propto x^2\Rightarrow y=kx^2.\; y=5\text{ when }x=1\Rightarrow k=5\;\Rightarrow y=5x^2.\\ &x\propto\tfrac{1}{w}\Rightarrow x=\tfrac{c}{w}.\; x=3\text{ when }w=0.5\Rightarrow c=3\times0.5=1.5.\\ &\text{For }w=0.25:\; x=\tfrac{1.5}{0.25}=6.\\ &\therefore\; y=5\times6^2=5\times36=180.\end{aligned}